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Abstract- Today's embedded systems are typi- 
cally distributed and more often confronted with time- 
varying demands. Existing methodologies tha t  opti- 
mize the partitioning of computational tasks to hard- 
ware (HW) and software (SW) at compile-time be- 
come obsolete or inefficient in this context as the  opti- 
mal use of existing resources cannot be foreseen. Here, 
we investigate a discrete iterative algorithm tha t  bal- 
ances the load of a HW/sW partition online: Once 
there are changing computational demands, the  sys- 
tem will dynamically assign tasks to reconfigurable 
HW or SW resources and migrates tasks to other 
nodes if necessary. For this purpose an Evolutionary 
Algorithm combined with a discrete version of a difi- 
sion algorithm is presented. Concerning the diffusion 
algorithm, we will show theoretically and by experi- 
ment that  our version is run-time optimal in a linear 
number of steps. 

I. INTRODUCTION 

Distributed and adaptive embedded platforms [3, 51 are 
becoming more and more important for applications in 
the area of body area networks, ambient intelligence and 
automotive technology. In order to be able to cope with 
different and time-variant application demands, these sys- 
tems must be adaptive to changing requirements. In the 
context of networked embedded systems the computa- 
tional requirements can often be unpredicted and chang- 
ing over time such that an offline partitioning methodol- 
ogy can only provide tradeoff-solutions with respect to 
conflicting objectives such as equal load, high perfor- 
mance, low power: etc. that are not efficient for every 
scenario. Therefore, we need to rethink the HW/SW par- 
titioning problem again for adaptive networked systems. 
Due to unforeseen demands, the system should be able to 
react to changing requirements by dynamically distribut- 
ing its load among the available resources. 

In this paper, we present a strategy for online partition- 
ing and dynamic load balancing. which is based on a class 
of algorithms that are successfully applied in the context 
of dynamic load balancing called dzflusion alyorithms 121. 
Here, we propose a discrete version of an optimal local 
iterative diffusion algorithm where only full task entities 
can be exchanged between nodes. and show theoretically 
as well as by experiment the quality of the algorithm. 

To the best of our knowledge, there exists no previous 
work on online HW/SW partitioning for networked em- 
bedded systems yet. The work of Vahid et al. in [6] dc- 
scribes load balancing on a platform consisting of a micro- 
processor and reconfigurable HW but there is no straight- 
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Fig. 1. Model of a ReCoNet at certain time instances t 

forward cxtcnsion of this methodology for networks with 
more than two nodes. 

This paper is organized as follows: Section 11 introduces 
the concept and models of the online partitioning prob- 
lem. Section I11 introduces the diffusion-based algorithms 
for migration of tasks between nodes. Section IV proposes 
a discrete version of the diffusion schemes and also proves 
theoretic bounds imposed on our algorithm. Section V 
shows the quality of our new algorithm by experiment. 

11. CONCEPTS AND MODELS 
In this paper, we consider embedded systems consist- 

ing of networked HW/SW reconfigurable nodes with the 
following properties: 

interconnect: A network consists of computational 
nodes connected by bidirectional point to point links. 
embedded: This feature requires the optimization of 
compe t ing  object ives  like power, l a tency  or area. 

4 HW and SW reconfigurable: Tasks can be executed 
either in SW or in HW on a node. 

In such a reconfigurable network (ReCoNet), two pos- 
sible scenarios exist where a HW/SW (re)partitioning of 
processes becomes important or even necessary: The first 
is the possible failure of a link or of a computational node 
at a certain time. The second is for optimality reasons due 
to  either finishing tasks or yet unknown arriving tasks. 
The structure of a network is given by a secalled archz- 
tectwe graph ga = ( N , C ) ,  where N is the finite set of 
nodes and C 

Example 1 Figure l ( a )  shows a specification of a Re- 
&Net at time t .  Assigned to each resource node is 
a set of tasks where each task has two possible imple- 
mentation styles (black nodes denote HW implementa- 
tions/white nodes dena'te S W implementations). The 
architecture graph an Figure l ( a )  consists of the nodes 
N = {nOtnl,nZ,n3}. I n  Figure l ( b ) ,  the network is  
shown at time t' > t where node nl has failed. The pro- 
cesses have been reassigned to the remaining nodes and 
due to optimality reasons the implementation style has 
changed. Additionally, a new task p~ has arrived. 
It is therefore the requirement of the online partitioning 
algorithm to distribute the tasks again to nodes in the 

N x N is the finite set of connections. 
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remaining network, e.g., to balance the load evenly be- 
tween the resources or to satisfy performance constraints. 
Without loss of generality, we assume that the architec- 
ture graph is undirected in the following. For simplicity, 
we also assume that each computational task p, may be 
assigned to each node in the network without restriction. 
Definition 1 (Temporal parti t ion) Given i s  a set of 
processes P = (PI, ...,pn} and an  undirected architecture 
graph ga = (AT, C ) ,  where N is  the finite set of nodes and 
C C N x N is the finite set of connections. At any instant 
of time t ,  P ( t )  & P denotes the subset of active processes, 
and g,( t )  denotes the subgraph of ga including all active 
resources N ( t )  and links C( t ) .  Then, a temporal HW/SW 
partition at time t i s  an assignment of each task p E P(t )  
to a resource N ( t )  as well as the indication whether the 
task is implemented in HW or SW. 
Here, the assignment of t a k s  to nodes in the network as 
well as their implementation in HW or SW can change 
over time. In order to allow the migration of a SW task 
to a HW task, the ability of RW reconfiguration of the 
node in a ReCoNet is required. 
Definition 2 (Workload characterization) Each 
task p j  E P( t )  causes a unique load TU: E R$ on 
resource ni E N ( t )  if implemented in HW and a load 
of wf E R,' if implemented in SW. I n  HW, the load 
is defined as the fraction of required area and maximal 
available area. In SW, we define the load ns the  fraction 
of execution time and period. 

111. BASIC DIFFUSION ALGORITHM 

First, we will introduce the basics of diflusion algo- 
rithms. In Section 4, we will extend thcse algorithms to 
the discrete cwe for solving the online HW/SW parti- 
tioning problem. Given an architccture graph and an as- 
signment of tasks to nodes? we want to move load across 
edges so that finally thc load weight of each node is equal. 
Characteristic to a diffusion-based algorithm, introduced 
by Cybenko [a ] ,  is that iteratively each node is allowed 
to move any size of load to each of its neighbors along 
the edges c E C(t) .  The quality o f  an algorithm is mea- 
sured in number of iterations that are required in order 
to achieve a balanced state and in terms of the amount of 
load moved over the edges of the graph. 
Definition 3 (local iterative diffusion algorithm) 
A local iterative load balancing algorithm performs iter- 
ations on the nodes of  sa. The load exchanges between 
two adjacent nodes are determined in each iteration as 
follows: 

y2-l = a(t&-l - w,"-') vc = {n i ,n j }  E c (1) 
z: = zf-l +YE-' vc = {ni, n3} f c 
wi = - Y:-l 

k 

==I" i ,n3 }€ c 

In the above definition, y," is the amount of load sent via 
' edge c in step k with Q being a parameter for the fraction 

of the load difference, x.f is the total amount of load sent 
via edge'c until iteration k and wf is the load of node i 
after the k-th iteration. 

If arbitrary real-valucd load portions may be sent at 
each iteration k ,  then it has been shown in 121 that the 

iteration converges to the average load W. The number of 
iterations needed to obtain a certain error bound may be 
large and is in general not known a priori. 

A slight modification of the above iteration scheme that 
works with changing values of ct in each iteration k has 
shown that the convergence speed can be drastically im- 
proved to exactly m - I iterations as follows without sac- 
rificing the fact that the scheme is E2-optimal in the total 
caused flow during the total number of iterations 141. Sim- 
ply choose a = in the iteration of Eq. (1) where Xk, 
1 5 I; 5 m - 1 denotes a certain numbering for the non- 
zero eigenvalues of L. L is called the Laplacian-matrix of 
the network and defined as L = D - B where D contains 
the node degrees as diagonal entries and B is the adja- 
cency matrix of the network. Hence, a = ak = I, and in 
each iteration I C ,  a node n, adds a flow of &(w,-' -W,"-') 

to the flow of edge {ni,nj}, choosing a different eigen- 
value for each iteration. We obtain an equally balanced 
load distribution after exactly m - 1 iterations, while the 
created flow is also 12-optimal. 

IV. ONLINE HW/SW-PARTITIONING 

x k  

A. Multiobjective Optimization Flow 
Due to the promising results presented later on, we 

propose the following 2-level online partitioning algorithm 
(see Figure 2): 
Evolutionary Algorithm: In the first step (init-pop()), 
our algorithm creates an initial population with individu- 
als, where each task is randomly assigned to HW or SW. 
Later on this hi-partition will be improved, using generic 
operators. This step is called implementation-seEection(). 
Diffusion: For a given initial binding of tasks, the initial 
loads wg of each active resource node ni may be computed 
by summation of all loads of either HW or SW tasks. 
Then, run the diffusion algorithm (discrete-dz&sion()) 
once for the BW and once for the SW tasks. This results 
in a new task assignment. 
Objectives: Our heuristic introduced here, tries to find 
a bi-partition such that the load is balanced between 

HW and SW, i.e., we minimize I E!!!! tu: ~ @I. 
With this strategy, a subsequent iterative diffusion will 
then create most likely task assignments that enable a 
good load Teserme on each active node which is impor- 
tant with respect to achieve fast repair times in case of 
unknown future node or link failures. This balance can- 
not be reached by direct application of our discrete dif- 
fusion algorithm, introduced later on. The diffusion al- 
gorithm balances only the load between nodes, but it is 
not able to balancc the HW/SW load. The second ob- 
jective is the effective load balance. We try to minimize 
IZU ~ max{maxi:I,icN{w$}, maXi:njEN{wF)}I. This objec- 
tive is zero for fully balanced loads. Here, we apply an 
evolutionary algorithm to encode the implementation se- 
lection as a binary string. This evaluation of the two 
objectives is denoted with terminate?. 

B. Discrete Diffusion Algorithm 
With this discrete diffusion algorithm, we have to over- 

come two problems: 
First of all, it is advisable not to split one process and 
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active task set P(t). 

Task implementation 
(O=HW,i=SW) 

. 1 

Fig. 2. Flowchart for tonline HW/SW partitioning 

distribute it to multiple nodes. This increases the data 
traffic in the network. 
Secondly, since the diffusion algorithm is an alternating 
iterative balancing scheme, it could occur that negative 
loads are assigned to computational nodes. 

From now on, let. ycontk be the real-valued continuous 
and ydisck the discrete flow on one edge c in iteration k.  
Analog, all variables are extended with cont for the con- 
tinuous and disc for the dicrete diffusion algorithm. Then 
the discrete diffusion algorithm works in each iteration k 
with k = (1, ..., m - 1) as follows: 
In the first step of an iteration, the continuous flows 
ycont,k on all edges are computed. In the next step, each 
node tries to fulfill this continuous flow for its incident 
edges. Thus, it sentis or receives tasks, respectively. Here, 
we encounter another NP-complete problem where we 
have to choose a certain number and size of tasks of one 
node in order to fulfill the optimal flow. Therefore, we 
randomly choose tasks as long as the discrete flow ydisct 
doesn't exceed the continuous flow or no more twks re- 
main on the node: 

ydisc; 5 ycon,t,k + et-' with e: = O  (2) 

In this cquation, we already respect the error e: done in 
the previous itcration, by not fulfilling the optimal real- 
valued flow. We are able to compute this error eck that 
occured in the current iteration step as follows: 

(3 )  

In order to minimize the final error e?, the error of the 
current iteration st8ep is respected in the following itera- 
tion step, see Eq. (2). From here on, we start with a next 
iteration until the last iteration step m- 1. After the last 
iteration step, the remaining error ey-' is minimized in 
one additional adjustment step in which nodes exchange 
tasks according to the error after m - 1 iterations: 

eck = ycont; + e:-' - ydisc: vc = {ni, nj) E c 

(4) ey = .y-1 - yc"dj 

yFdj denotes the flow in this adjustment step. 
Now, let us compare the behavior of our discretc diffu- 

sion algorithm and its continuous counterpart. 
Theorem 1 The discrete diflusion algorithm requires m 
steps. 
Proof 1 W e  introduced just a single adjustment step. 0 

Theorem 2 The overall congestion by the discrete dif- 
fusion algorithm is less or equal than that caused by i t s  
continuous counterpart which i s  known to be 12-optimal. 

Proof 2 Let xcont, and xdisc, denote the whole load 
transmitted via edge c of the continuous and the discrete 
diflusion algorithm, respectively. Then we first show that 

xcont, 2 xdisc, ( 5 )  

xcontc = ycont; where ycont: 2 0 ( 6 )  

and xdisc ,  = ydisc: + yZdJ (71 

no matter what network, initial load and edge c.  With 
m-1 

k=l 77-1 

k=l 

where yEdj is the flow via edge c in the last adjustment 
step which is always less than or equal to ep-', see Eq. 2: 

e y - l  2 y,"d' (8) 

Replacing ycontt  i n  Eq. (6) with Eq. (31, leads to: 

x c m t ,  = (e." - e:-' + ydisc:) with e: = 0 (9) 

Inserting xcont, from Eq. (S i  and xdisc, f rom Eq. (7) 

m-1 

k=l 

in Eq. (5) leads to: 

k=l k = l  

With  respect to Eq. (8) we have proven that the discrete 
congestion does not exceed the congestion of the continu- 
aus diffusion algorithm in the network. o 
Theorem 3 The maximal bound for the deviataon of the 
discrete to  the average Eoad 6 on node ni is  the product of 
the mazimal load S m a x  of a task p E P(t)  and the degree 
d, of the node ni: 

(13) dt * Smox > 1% - wTI 

Proof 3 
d i  m-1 

With w = wp - ycont: 
c=l k=l 

J 

we compute the average and the discrete Eoad after mn- 
ning the discrete diffusion algorithm. In Eq. (14) and 
(151, we accumulate the flow on all edges of one node and 
add it to the load of the node ni. 
W e  already mentioned the last adjustment step after the 
m ~ 1 iterations. After this adjustment step, we require 
the final error e r  to be less than the maximal task size: 

e: < S,,, (16) 
Inserting Eg. (14) and (15) in (131, leads to: 

I d i  m-1 
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Fig. 3. Relative deviation between the optimal balanced and the 
real network over the number of tasks. 

Replacing ydisc: wzth the help of Eq. (31, results in: 
di m-I 

d,  * S,,, > 1 - wont: + 
c = l  k=l 

I d. I 

According to Eq. ( I S )  and (21), this assumption as cor- 
rect. The maximal deviation between the continuous apti- 
m,um and the discrete optimum of the load is therefore less 
than the maximal size of a task times the degree of a node, 
which is due t o  the nature of local iterative algorithms and 

U 

Note that all eigenvalues have to be computed prior to 
running the iterations. 

V .  EXPERIMENTS 
By experiment, we evaluated the discrete diffusion al- 

gorithm for different types of a network like meshes with 
3x3 or 4x4 nodes, a ring and a chordal ring with 8 nodes. 

In our experiment we use different networks with a 
varying number of tasks between 10 to 100000. The size 
of the tasks ranges from 1 to 100 and is randomly dis- 
tributed over the number of tasks. In the beginning all 
tasks arc mapped onto a single resource node, which is 
obviously a worst caSe scenario. The focus is set on the 
load error It3 - wil and the congestion in the network. 

In Figure 3: we present the arithmetic mean deviation 
v in the different networks over the number of task?: 

thus, optimal in the discrete case. 

Wc can see two interesting properties: Firstly, the devia- 
tion in the mesh with 4x4 nodes is very high. This stems 
from the fact that more nodes exist than tasks (16 nodes, 
10 tasks). SecondIy, for an increasing number of tasks we 

Mesh 3x3 
-Mesh 4x4 
A- Ring 

10 1W 1000 10000 IOWW 
Numberof tasks 

Fig. 4. Cornparison of congestions caused by t h e  discrete and the 
continuous diffusion algorithm. 

approxiniate the continuous diffusion scheme. 
In Figure 4, we illustrate the relation between the conges- 
tions C R  caused bv the discrete diffusion and the continu- 

If the relative congestion is less than 1 the discrete diffu- 
sion scheme performs better than its continuous counter- 
part, which is the case in all experiments. 

Compared to the continuous diffusion algorithm, we 
have proven theoretically and shown practically that our 
discrete version is always better concerning the conges- 
tion. Moreover, we have theoretically deduced the upper 
bounds for the deviation of the optimal load distribution 
and the discrete load distribution. Compared to these 
theoretical bounds our algorithm produces better results 
in the presented examples than the theoretical bounds. 

VI. CONCLUSIONS AND FUTURE W O R K  
We have presented a first approach to solving the 

HW/SW partitioning problem online for embedded net- 
worked systems. In order to cope with faults and dynamic 
load over longer time intervals, an iterative optimization 
that finds optimal (re)partitions of tasks is applied. The 
idea is to increase the likelihood that future node and link 
failures may be compensated fast due to load reserves in 
the neighborhood of each node that may fail. Therefore, 
we developed a discrete diffusion algorithm based on cori- 
tinuous diffusion schemes and proved rumtime optimality 
in linear number of steps. Thus, this paper presents the- 
oretical and practical aspects to solve the HW/SW parti- 
tioning problem online. 
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