
PI- 13

Online Hardware/Software Partitioning in Networked Embedded
Systems *

Thilo Streichert, Christian Haubelt, Jiirgen Teich

{streichert, haubelt,teich)@cs.fau.de
University of Erlangen-Nuremberg, Germany

Abstract- Today's embedded systems are typi-
cally distributed and more often confronted with time-
varying demands. Existing methodologies tha t opti-
mize the partitioning of computational tasks to hard-
ware (HW) and software (SW) at compile-time be-
come obsolete or inefficient in this context as the opti-
mal use of existing resources cannot be foreseen. Here,
we investigate a discrete iterative algorithm tha t bal-
ances the load of a HW/sW partition online: Once
there are changing computational demands, the sys-
tem will dynamically assign tasks to reconfigurable
HW or SW resources and migrates tasks to other
nodes if necessary. For this purpose an Evolutionary
Algorithm combined with a discrete version of a difi-
sion algorithm is presented. Concerning the diffusion
algorithm, we will show theoretically and by experi-
ment that our version is run-time optimal in a linear
number of steps.

I. INTRODUCTION

Distributed and adaptive embedded platforms [3, 51 are
becoming more and more important for applications in
the area of body area networks, ambient intelligence and
automotive technology. In order to be able to cope with
different and time-variant application demands, these sys-
tems must be adaptive to changing requirements. In the
context of networked embedded systems the computa-
tional requirements can often be unpredicted and chang-
ing over time such that an offline partitioning methodol-
ogy can only provide tradeoff-solutions with respect to
conflicting objectives such as equal load, high perfor-
mance, low power: etc. that are not efficient for every
scenario. Therefore, we need to rethink the HW/SW par-
titioning problem again for adaptive networked systems.
Due to unforeseen demands, the system should be able to
react to changing requirements by dynamically distribut-
ing its load among the available resources.

In this paper, we present a strategy for online partition-
ing and dynamic load balancing. which is based on a class
of algorithms that are successfully applied in the context
of dynamic load balancing called dzflusion alyorithms 121.
Here, we propose a discrete version of an optimal local
iterative diffusion algorithm where only full task entities
can be exchanged between nodes. and show theoretically
as well as by experiment the quality of the algorithm.

To the best of our knowledge, there exists no previous
work on online HW/SW partitioning for networked em-
bedded systems yet. The work of Vahid et al. in [6] dc-
scribes load balancing on a platform consisting of a micro-
processor and reconfigurable HW but there is no straight-

*Supported in part. by the German Science Foundation (DFG),
SPP 1148 (Rekonfigurierbare Rechensysteme)

Fig. 1. Model of a ReCoNet at certain time instances t

forward cxtcnsion of this methodology for networks with
more than two nodes.

This paper is organized as follows: Section 11 introduces
the concept and models of the online partitioning prob-
lem. Section I11 introduces the diffusion-based algorithms
for migration of tasks between nodes. Section IV proposes
a discrete version of the diffusion schemes and also proves
theoretic bounds imposed on our algorithm. Section V
shows the quality of our new algorithm by experiment.

11. CONCEPTS AND MODELS
In this paper, we consider embedded systems consist-

ing of networked HW/SW reconfigurable nodes with the
following properties:

interconnect: A network consists of computational
nodes connected by bidirectional point to point links.
embedded: This feature requires the optimization of
compe t ing object ives like power, l a tency or area.

4 HW and SW reconfigurable: Tasks can be executed
either in SW or in HW on a node.

In such a reconfigurable network (ReCoNet), two pos-
sible scenarios exist where a HW/SW (re)partitioning of
processes becomes important or even necessary: The first
is the possible failure of a link or of a computational node
at a certain time. The second is for optimality reasons due
to either finishing tasks or yet unknown arriving tasks.
The structure of a network is given by a secalled archz-
tectwe graph ga = (N , C) , where N is the finite set of
nodes and C

Example 1 Figure l (a) shows a specification of a Re-
&Net at time t . Assigned to each resource node is
a set of tasks where each task has two possible imple-
mentation styles (black nodes denote HW implementa-
tions/white nodes dena'te S W implementations). The
architecture graph an Figure l (a) consists of the nodes
N = {nOtnl,nZ,n3}. I n Figure l (b) , the network is
shown at time t' > t where node nl has failed. The pro-
cesses have been reassigned to the remaining nodes and
due to optimality reasons the implementation style has
changed. Additionally, a new task p~ has arrived.
It is therefore the requirement of the online partitioning
algorithm to distribute the tasks again to nodes in the

N x N is the finite set of connections.

0-7803-8736-8/05/$20.00 02005 IEEE. 982 ASP-DAC 2005

Authorized licensed use limited to: University of Florida. Downloaded on March 23, 2009 at 01:13 from IEEE Xplore. Restrictions apply.

mailto:haubelt,teich)@cs.fau.de

remaining network, e.g., to balance the load evenly be-
tween the resources or to satisfy performance constraints.
Without loss of generality, we assume that the architec-
ture graph is undirected in the following. For simplicity,
we also assume that each computational task p, may be
assigned to each node in the network without restriction.
Definition 1 (Temporal parti t ion) Given i s a set of
processes P = (PI, ...,pn} and an undirected architecture
graph ga = (AT, C) , where N is the finite set of nodes and
C C N x N is the finite set of connections. At any instant
of time t , P (t) & P denotes the subset of active processes,
and g,(t) denotes the subgraph of ga including all active
resources N (t) and links C(t) . Then, a temporal HW/SW
partition at time t i s an assignment of each task p E P(t)
to a resource N (t) as well as the indication whether the
task is implemented in HW or SW.
Here, the assignment of t a k s to nodes in the network as
well as their implementation in HW or SW can change
over time. In order to allow the migration of a SW task
to a HW task, the ability of RW reconfiguration of the
node in a ReCoNet is required.
Definition 2 (Workload characterization) Each
task p j E P(t) causes a unique load TU: E R$ on
resource ni E N (t) if implemented in HW and a load
of wf E R,' if implemented in SW. I n HW, the load
is defined as the fraction of required area and maximal
available area. In SW, we define the load ns the fraction
of execution time and period.

111. BASIC DIFFUSION ALGORITHM

First, we will introduce the basics of diflusion algo-
rithms. In Section 4, we will extend thcse algorithms to
the discrete cwe for solving the online HW/SW parti-
tioning problem. Given an architccture graph and an as-
signment of tasks to nodes? we want to move load across
edges so that finally thc load weight of each node is equal.
Characteristic to a diffusion-based algorithm, introduced
by Cybenko [a] , is that iteratively each node is allowed
to move any size of load to each of its neighbors along
the edges c E C(t) . The quality o f an algorithm is mea-
sured in number of iterations that are required in order
to achieve a balanced state and in terms of the amount of
load moved over the edges of the graph.
Definition 3 (local iterative diffusion algorithm)
A local iterative load balancing algorithm performs iter-
ations on the nodes of sa. The load exchanges between
two adjacent nodes are determined in each iteration as
follows:

y2-l = a(t&-l - w,"-') vc = {n i ,n j } E c (1)
z: = zf-l +YE-' vc = {ni, n3} f c
wi = - Y:-l

k

==I" i ,n3 }€ c

In the above definition, y," is the amount of load sent via
' edge c in step k with Q being a parameter for the fraction

of the load difference, x.f is the total amount of load sent
via edge'c until iteration k and wf is the load of node i
after the k-th iteration.

If arbitrary real-valucd load portions may be sent at
each iteration k , then it has been shown in 121 that the

iteration converges to the average load W. The number of
iterations needed to obtain a certain error bound may be
large and is in general not known a priori.

A slight modification of the above iteration scheme that
works with changing values of ct in each iteration k has
shown that the convergence speed can be drastically im-
proved to exactly m - I iterations as follows without sac-
rificing the fact that the scheme is E2-optimal in the total
caused flow during the total number of iterations 141. Sim-
ply choose a = in the iteration of Eq. (1) where Xk,
1 5 I; 5 m - 1 denotes a certain numbering for the non-
zero eigenvalues of L. L is called the Laplacian-matrix of
the network and defined as L = D - B where D contains
the node degrees as diagonal entries and B is the adja-
cency matrix of the network. Hence, a = ak = I, and in
each iteration I C , a node n, adds a flow of &(w,-' -W,"-')

to the flow of edge {ni,nj}, choosing a different eigen-
value for each iteration. We obtain an equally balanced
load distribution after exactly m - 1 iterations, while the
created flow is also 12-optimal.

IV. ONLINE HW/SW-PARTITIONING

x k

A. Multiobjective Optimization Flow
Due to the promising results presented later on, we

propose the following 2-level online partitioning algorithm
(see Figure 2):
Evolutionary Algorithm: In the first step (init-pop()),
our algorithm creates an initial population with individu-
als, where each task is randomly assigned to HW or SW.
Later on this hi-partition will be improved, using generic
operators. This step is called implementation-seEection().
Diffusion: For a given initial binding of tasks, the initial
loads wg of each active resource node ni may be computed
by summation of all loads of either HW or SW tasks.
Then, run the diffusion algorithm (discrete-dz&sion())
once for the BW and once for the SW tasks. This results
in a new task assignment.
Objectives: Our heuristic introduced here, tries to find
a bi-partition such that the load is balanced between

HW and SW, i.e., we minimize I E!!!! tu: ~ @I.
With this strategy, a subsequent iterative diffusion will
then create most likely task assignments that enable a
good load Teserme on each active node which is impor-
tant with respect to achieve fast repair times in case of
unknown future node or link failures. This balance can-
not be reached by direct application of our discrete dif-
fusion algorithm, introduced later on. The diffusion al-
gorithm balances only the load between nodes, but it is
not able to balancc the HW/SW load. The second ob-
jective is the effective load balance. We try to minimize
IZU ~ max{maxi:I,icN{w$}, maXi:njEN{wF)}I. This objec-
tive is zero for fully balanced loads. Here, we apply an
evolutionary algorithm to encode the implementation se-
lection as a binary string. This evaluation of the two
objectives is denoted with terminate?.

B. Discrete Diffusion Algorithm
With this discrete diffusion algorithm, we have to over-

come two problems:
First of all, it is advisable not to split one process and

983

Authorized licensed use limited to: University of Florida. Downloaded on March 23, 2009 at 01:13 from IEEE Xplore. Restrictions apply.

active task set P(t).

Task implementation
(O=HW,i=SW)

. 1

Fig. 2. Flowchart for tonline HW/SW partitioning

distribute it to multiple nodes. This increases the data
traffic in the network.
Secondly, since the diffusion algorithm is an alternating
iterative balancing scheme, it could occur that negative
loads are assigned to computational nodes.

From now on, let. ycontk be the real-valued continuous
and ydisck the discrete flow on one edge c in iteration k.
Analog, all variables are extended with cont for the con-
tinuous and disc for the dicrete diffusion algorithm. Then
the discrete diffusion algorithm works in each iteration k
with k = (1, ..., m - 1) as follows:
In the first step of an iteration, the continuous flows
ycont,k on all edges are computed. In the next step, each
node tries to fulfill this continuous flow for its incident
edges. Thus, it sentis or receives tasks, respectively. Here,
we encounter another NP-complete problem where we
have to choose a certain number and size of tasks of one
node in order to fulfill the optimal flow. Therefore, we
randomly choose tasks as long as the discrete flow ydisct
doesn't exceed the continuous flow or no more twks re-
main on the node:

ydisc; 5 ycon,t,k + et-' with e: = O (2)

In this cquation, we already respect the error e: done in
the previous itcration, by not fulfilling the optimal real-
valued flow. We are able to compute this error eck that
occured in the current iteration step as follows:

(3)

In order to minimize the final error e?, the error of the
current iteration st8ep is respected in the following itera-
tion step, see Eq. (2). From here on, we start with a next
iteration until the last iteration step m- 1. After the last
iteration step, the remaining error ey-' is minimized in
one additional adjustment step in which nodes exchange
tasks according to the error after m - 1 iterations:

eck = ycont; + e:-' - ydisc: vc = {ni, nj) E c

(4) ey = .y-1 - yc"dj

yFdj denotes the flow in this adjustment step.
Now, let us compare the behavior of our discretc diffu-

sion algorithm and its continuous counterpart.
Theorem 1 The discrete diflusion algorithm requires m
steps.
Proof 1 W e introduced just a single adjustment step. 0

Theorem 2 The overall congestion by the discrete dif-
fusion algorithm is less or equal than that caused by i t s
continuous counterpart which i s known to be 12-optimal.

Proof 2 Let xcont, and xdisc, denote the whole load
transmitted via edge c of the continuous and the discrete
diflusion algorithm, respectively. Then we first show that

xcont, 2 xdisc, (5)

xcontc = ycont; where ycont: 2 0 (6)

and xdisc , = ydisc: + yZdJ (71

no matter what network, initial load and edge c. With
m-1

k=l 77-1

k=l

where yEdj is the flow via edge c in the last adjustment
step which is always less than or equal to ep-', see Eq. 2:

e y - l 2 y,"d' (8)

Replacing ycontt i n Eq. (6) with Eq. (31, leads to:

x c m t , = (e." - e:-' + ydisc:) with e: = 0 (9)

Inserting xcont, from Eq. (S i and xdisc, f rom Eq. (7)

m-1

k=l

in Eq. (5) leads to:

k=l k = l

With respect to Eq. (8) we have proven that the discrete
congestion does not exceed the congestion of the continu-
aus diffusion algorithm in the network. o
Theorem 3 The maximal bound for the deviataon of the
discrete to the average Eoad 6 on node ni is the product of
the mazimal load S m a x of a task p E P(t) and the degree
d, of the node ni:

(13) dt * Smox > 1% - wTI

Proof 3
d i m-1

With w = wp - ycont:
c=l k=l

J

we compute the average and the discrete Eoad after mn-
ning the discrete diffusion algorithm. In Eq. (14) and
(151, we accumulate the flow on all edges of one node and
add it to the load of the node ni.
W e already mentioned the last adjustment step after the
m ~ 1 iterations. After this adjustment step, we require
the final error e r to be less than the maximal task size:

e: < S,,, (16)
Inserting Eg. (14) and (15) in (131, leads to:

I d i m-1

984

Authorized licensed use limited to: University of Florida. Downloaded on March 23, 2009 at 01:13 from IEEE Xplore. Restrictions apply.

I

i o 100 IOW 10000 100000
Number of Tasks

Fig. 3. Relative deviation between the optimal balanced and the
real network over the number of tasks.

Replacing ydisc: wzth the help of Eq. (31, results in:
di m-I

d, * S,,, > 1 - wont: +
c = l k=l

I d. I

According to Eq. (I S) and (21), this assumption as cor-
rect. The maximal deviation between the continuous apti-
m,um and the discrete optimum of the load is therefore less
than the maximal size of a task times the degree of a node,
which is due t o the nature of local iterative algorithms and

U

Note that all eigenvalues have to be computed prior to
running the iterations.

V . EXPERIMENTS
By experiment, we evaluated the discrete diffusion al-

gorithm for different types of a network like meshes with
3x3 or 4x4 nodes, a ring and a chordal ring with 8 nodes.

In our experiment we use different networks with a
varying number of tasks between 10 to 100000. The size
of the tasks ranges from 1 to 100 and is randomly dis-
tributed over the number of tasks. In the beginning all
tasks arc mapped onto a single resource node, which is
obviously a worst caSe scenario. The focus is set on the
load error It3 - wil and the congestion in the network.

In Figure 3: we present the arithmetic mean deviation
v in the different networks over the number of task?:

thus, optimal in the discrete case.

Wc can see two interesting properties: Firstly, the devia-
tion in the mesh with 4x4 nodes is very high. This stems
from the fact that more nodes exist than tasks (16 nodes,
10 tasks). SecondIy, for an increasing number of tasks we

Mesh 3x3
-Mesh 4x4
A- Ring

10 1W 1000 10000 IOWW
Numberof tasks

Fig. 4. Cornparison of congestions caused by t h e discrete and the
continuous diffusion algorithm.

approxiniate the continuous diffusion scheme.
In Figure 4, we illustrate the relation between the conges-
tions C R caused bv the discrete diffusion and the continu-

If the relative congestion is less than 1 the discrete diffu-
sion scheme performs better than its continuous counter-
part, which is the case in all experiments.

Compared to the continuous diffusion algorithm, we
have proven theoretically and shown practically that our
discrete version is always better concerning the conges-
tion. Moreover, we have theoretically deduced the upper
bounds for the deviation of the optimal load distribution
and the discrete load distribution. Compared to these
theoretical bounds our algorithm produces better results
in the presented examples than the theoretical bounds.

VI. CONCLUSIONS AND FUTURE W O R K
We have presented a first approach to solving the

HW/SW partitioning problem online for embedded net-
worked systems. In order to cope with faults and dynamic
load over longer time intervals, an iterative optimization
that finds optimal (re)partitions of tasks is applied. The
idea is to increase the likelihood that future node and link
failures may be compensated fast due to load reserves in
the neighborhood of each node that may fail. Therefore,
we developed a discrete diffusion algorithm based on cori-
tinuous diffusion schemes and proved rumtime optimality
in linear number of steps. Thus, this paper presents the-
oretical and practical aspects to solve the HW/SW parti-
tioning problem online.

REFERENCES
[l] Douglas Chang, Malgorzata Marek-Sadowska, “ Partitioning

Sequential Circuits on Dynamically Reconfigurable FPGAs,”
International Symposium o n FPGAs, 1998.

[2] G . Cybertko, ‘‘ Dynamic Load Balancing for Distributed Mem-
ory Multiprocessors,” Jozlmel of Parallel and Distributed Sys-
tems, pp. 279-301, 1998.

CORDS: Hardware-Software Co-Synthesis
of Reconfigurable Real-Time Distributed Embedded Systems,”
ICCAD’98, 1998.

[4] R. Elsiisser, A. Frommer, B. Monien, R. Preis, “ Optimal and
Alternating-Direction Loadbalancing Schemes,’’ EINT-PW 99,
Parallel Processing, 1999.

[5] I. Ouaiss, S. Govindarajan, V. Srirrivasan, M. Kaul, R. Vemuri,
li An Integrated Partitioning and Synthesis System for Dynami-
cally Reconfigurable Multi-FPGA Architectures,” IPPS/SPDP
Workshops, 1998.

[6] C. Zhang, F. Vahid, R. Lysecky, I‘ A Self-Tuning Cache Archi-
tecture for Embedded Systems,” DATE’U4, 2004.

[3] R.Dick, N. Jha,

985

Authorized licensed use limited to: University of Florida. Downloaded on March 23, 2009 at 01:13 from IEEE Xplore. Restrictions apply.

